19/08/2021

Transforming Robotic Plans with Timed Automata to Solve Temporal Platform Constraints

Tarik Viehmann, Till Hofmann, Gerhard Lakemeyer

Keywords: Knowledge Representation and Reasoning, Qualitative, Geometric, Spatial, Temporal Reasoning, Behavior and Control, Cognitive Robotics, Temporal and Hybrid Planning

Abstract: Task planning for mobile robots typically uses an abstract planning domain that ignores the low-level details of the specific robot platform. Therefore, executing a plan on an actual robot often requires additional steps to deal with the specifics of the robot platform. Such a platform can be modeled with timed automata and a set of temporal constraints that need to be satisfied during execution. In this paper, we describe how to transform an abstract plan into a platform-specific action sequence that satisfies all platform constraints. The transformation procedure first transforms the plan into a timed automaton, which is then combined with the platform automata while removing all transitions that violate any constraint. We then apply reachability analysis on the resulting automaton. From any solution trace one can obtain the abstract plan extended by additional platform actions such that all platform constraints are satisfied. We describe the transformation procedure in detail and provide an evaluation in two real-world robotics scenarios.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers