16/11/2020

A Long Horizon Planning Framework for Manipulating Rigid Pointcloud Objects

Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois Hogan, Joshua Tenenbaum, Pulkit Agrawal, Alberto Rodriguez

Keywords:

Abstract: We present a framework for solving long-horizon planning problems involving manipulation of rigid objects that operates directly from a point-cloud observation. Our method plans in the space of object subgoals and frees the planner from reasoning about robot-object interaction dynamics. We show that for rigid-bodies, this abstraction can be realized using low-level manipulation skills that maintain sticking-contact with the object and represent subgoals as 3D transformations. To enable generalization to unseen objects and improve planning performance, we propose a novel way of representing subgoals for rigid-body manipulation and a graph-attention based neural network architecture for processing point-cloud inputs. We experimentally validate these choices using simulated and real-world experiments on the YuMi robot. Results demonstrate that our method can successfully manipulate new objects into target configurations requiring long-term planning. Overall, our framework realizes the best of the worlds of task-and-motion planning (TAMP) and learning-based approaches. Project website: https://anthonysimeonov.github.io/rpo-planning-framework/.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers