26/08/2020

Value Preserving State-Action Abstractions

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, Michael Littman

Keywords:

Abstract: Abstraction can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information, potentially compromising an agent's ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve representation of near-optimal policies. We first define $\phi$-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for $\phi$-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, $\phi$-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers