02/02/2021

Incentive-Aware PAC Learning

Hanrui Zhang, Vincent Conitzer

Keywords:

Abstract: We study PAC learning in the presence of strategic manipulation, where data points may modify their features in certain predefined ways in order to receive a better outcome. We show that the vanilla ERM principle fails to achieve any nontrivial guarantee in this context. Instead, we propose an incentive-aware version of the ERM principle which has asymptotically optimal sample complexity. We then focus our attention on incentive-compatible classifiers, which provably prevent any kind of strategic manipulation. We give a sample complexity bound that is, curiously, independent of the hypothesis class, for the ERM principle restricted to incentive-compatible classifiers. This suggests that incentive compatibility alone can act as an effective means of regularization. We further show that it is without loss of generality to consider only incentive-compatible classifiers when opportunities for strategic manipulation satisfy a transitivity condition. As a consequence, in such cases, our hypothesis-class-independent sample complexity bound applies even without incentive compatibility. Our results set the foundations of incentive-aware PAC learning.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948680
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers