26/08/2020

Tight Analysis of Privacy and Utility Tradeoff in Approximate Differential Privacy

Quan Geng, Wei Ding, Ruiqi Guo, Sanjiv Kumar

Keywords:

Abstract: We characterize the minimum noise amplitude and power for noise-adding mechanisms in (epsilon, delta)-differential privacy for single real-valued query function. We derive new lower bounds using the duality of linear programming, and new upper bounds by analyzing a special class of (epsilon, delta)-differentially private mechanisms, the truncated Laplacian mechanisms. We show that the multiplicative gap of the lower bounds and upper bounds goes to zero in various high privacy regimes, proving the tightness of the lower and upper bounds. In particular, our results close the previous constant multiplicative gap in the discrete setting. Numeric experiments show the improvement of the truncated Laplacian mechanism over the optimal Gaussian mechanism in all privacy regimes.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers