23/07/2020

Interactive hybrid approach to combine machine and human intelligence for personalized rehabilitation assessment

Min Hun Lee, Daniel P. Siewiorek, Asim Smailagic, Alexandre Bernardino, Sergi Bermúdez i Badia

Keywords: Applied computing, Life and medical sciences, Health care information systems, Human-centered computing, Human computer interaction (HCI), Interactive systems and tools, Theory of computation, Theory and algorithms for application domains, Machine learning theory, Reinforcement learning, Sequential decision making

Abstract: Automated assessment of rehabilitation exercises using machine learning has a potential to improve current rehabilitation practices. However, it is challenging to completely replicate therapist's decision making on the assessment of patients with various physical conditions. This paper describes an interactive machine learning approach that iteratively integrates a data-driven model with expert's knowledge to assess the quality of rehabilitation exercises. Among a large set of kinematic features of the exercise motions, our approach identifies the most salient features for assessment using reinforcement learning and generates a user-specific analysis to elicit feature relevance from a therapist for personalized rehabilitation assessment. While accommodating therapist's feedback on feature relevance, our approach can tune a generic assessment model into a personalized model. Specifically, our approach improves performance to predict assessment from 0.8279 to 0.9116 average F1-scores of three upper-limb rehabilitation exercises (p < 0.01). Our work demonstrates that machine learning models with feature selection can generate kinematic feature-based analysis as explanations on predictions of a model to elicit expert's knowledge of assessment, and how machine learning models can augment with expert's knowledge for personalized rehabilitation assessment.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACM-CHIL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers