09/07/2020

New Potential-Based Bounds for Prediction with Expert Advice

Vladimir A Kobzar, Robert Kohn, Zhilei Wang

Keywords: Online learning, Adversarial learning and robustness, Economics, game theory, and incentives

Abstract: This work addresses the classic machine learning problem of online prediction with expert advice. We consider the finite-horizon version of this zero-sum, two-person game. Using verification arguments from optimal control theory, we view the task of finding better lower and upper bounds on the value of the game (regret) as the problem of finding better sub- and supersolutions of certain partial differential equations (PDEs). These sub- and supersolutions serve as the potentials for player and adversary strategies, which lead to the corresponding bounds. To get explicit bounds, we use closed-form solutions of specific PDEs. Our bounds hold for any given number of experts and horizon; in certain regimes (which we identify) they improve upon the previous state of the art. For two and three experts, our bounds provide the optimal leading order term.

 1
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers