20/07/2020

New Potential-Based Bounds for the Geometric-Stopping Version of Prediction with Expert Advice

Vladimir A. Kobzar, Robert V. Kohn, Zhilei Wang

Keywords:

Abstract: This work addresses the classic machine learning problem of online prediction with expert advice. A new potential-based framework for the fixed horizon version of this problem has been recently developed using verification arguments from optimal control theory. This paper extends this framework to the random (geometric) stopping version. To obtain explicit bounds, we construct potentials for the geometric version from potentials used for the fixed horizon version of the problem. This construction leads to new explicit lower and upper bounds associated with specific adversary and player strategies. While there are several known lower bounds in the fixed horizon setting, our lower bounds appear to be the first such results in the geometric stopping setting with an arbitrary number of experts. Our framework also leads in some cases to improved upper bounds. For two and three experts, our bounds are optimal to leading order.

 1
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MSML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers