09/07/2020

Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK

Yuanzhi Li, Tengyu Ma, Hongyang R Zhang

Keywords: Neural networks/deep learning, Matrix/tensor estimation, Non-convex optimization

Abstract: We consider the dynamic of gradient descent for learning a two-layer neural network. We assume the input $x\in\mathbb{R}^d$ is drawn from a Gaussian distribution and the label of $x$ satisfies $f^{\star}(x) = a^{\top}|W^{\star}x|$, where $a\in\mathbb{R}^d$ is a nonnegative vector and $W^{\star} \in\mathbb{R}^{d\times d}$ is an orthonormal matrix. We show that an \emph{over-parameterized} two-layer neural network with ReLU activation, trained by gradient descent from \emph{random initialization}, can provably learn the ground truth network with population loss at most $o(1/d)$ in polynomial time with polynomial samples. On the other hand, we prove that any kernel method, including Neural Tangent Kernel, with a polynomial number of samples in $d$, has population loss at least $\Omega(1 / d)$.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers