09/07/2020

Learning Halfspaces with Massart Noise Under Structured Distributions

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis

Keywords: PAC learning,

Abstract: We study the problem of learning halfspaces with Massart noise in the distribution-specific PAC model. We give the first computationally efficient algorithm for this problem with respect to a broad family of distributions, including log-concave distributions. This resolves an open question posed in a number of prior works. Our approach is extremely simple: We identify a smooth non-convex surrogate loss with the property that any approximate stationary point of this loss defines a halfspace that is close to the target halfspace. Given this structural result, we can use SGD to solve the underlying learning problem.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers