13/04/2021

Learning with risk-averse feedback under potentially heavy tails

Matthew Holland, El Mehdi Haress

Keywords:

Abstract: We study learning algorithms that seek to minimize the conditional value-at-risk (CVaR), when all the learner knows is that the losses (and gradients) incurred may be heavy-tailed. We begin by studying a general-purpose estimator of CVaR for potentially heavy-tailed random variables, which is easy to implement in practice, and requires nothing more than finite variance and a distribution function that does not change too fast or slow around just the quantile of interest. With this estimator in hand, we then derive a new learning algorithm which robustly chooses among candidates produced by stochastic gradient-driven sub-processes, obtain excess CVaR bounds, and finally complement the theory with a regression application.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 3:12