09/07/2020

Universal Approximation with Deep Narrow Networks

Patrick Kidger, Terry J Lyons

Keywords: Neural networks/deep learning, Regression

Abstract: The classical Universal Approximation Theorem holds for neural networks of arbitrary width and bounded depth. Here we consider the natural `dual' scenario for networks of bounded width and arbitrary depth. Precisely, let $n$ be the number of inputs neurons, $m$ be the number of output neurons, and let $\rho$ be any nonaffine continuous function, with a continuous nonzero derivative at some point. Then we show that the class of neural networks of arbitrary depth, width $n + m + 2$, and activation function $\rho$, is dense in $C(K; \mathbb{R}^m)$ for $K \subseteq \mathbb{R}^n$ with $K$ compact. This covers every activation function possible to use in practice, and also includes polynomial activation functions, which is unlike the classical version of the theorem, and provides a qualitative difference between deep narrow networks and shallow wide networks. We then consider several extensions of this result. In particular we consider nowhere differentiable activation functions, density in noncompact domains with respect to the $L^p$-norm, and how the width may be reduced to just $n + m + 1$ for `most' activation functions.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers