20/07/2020

Neural network integral representations with the ReLU activation function

Armenak Petrosyan, Anton Dereventsov, Clayton G. Webster

Keywords:

Abstract: In this effort, we derive a formula for the integral representation of a shallow neural network with the ReLU activation function. We assume that the outer weighs admit a finite $L_1$-norm with respect to Lebesgue measure on the sphere. For univariate target functions we further provide a closed-form formula for all possible representations. Additionally, in this case our formula allows one to explicitly solve the least $L_1$-norm neural network representation for a given function.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MSML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers