04/07/2020

Efficient Pairwise Annotation of Argument Quality

Lukas Gienapp, Benno Stein, Matthias Hagen, Martin Potthast

Keywords: argument quality, annotation framework, stochastic model, sampling strategy

Abstract: We present an efficient annotation framework for argument quality, a feature difficult to be measured reliably as per previous work. A stochastic transitivity model is combined with an effective sampling strategy to infer high-quality labels with low effort from crowdsourced pairwise judgments. The model's capabilities are showcased by compiling Webis-ArgQuality-20, an argument quality corpus that comprises scores for rhetorical, logical, dialectical, and overall quality inferred from a total of 41,859 pairwise judgments among 1,271 arguments. With up to 93% cost savings, our approach significantly outperforms existing annotation procedures. Furthermore, novel insight into argument quality is provided through statistical analysis, and a new aggregation method to infer overall quality from individual quality dimensions is proposed.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers