04/07/2020

An Effectiveness Metric for Ordinal Classification: Formal Properties and Experimental Results

Enrique Amigo, Julio Gonzalo, Stefano Mizzaro, Jorge Carrillo-de-Albornoz

Keywords: Ordinal Classification, Ordinal tasks, sentiment analysis, NLP tasks

Abstract: In Ordinal Classification tasks, items have to be assigned to classes that have a relative ordering, such as "positive", "neutral", "negative" in sentiment analysis. Remarkably, the most popular evaluation metrics for ordinal classification tasks either ignore relevant information (for instance, precision/recall on each of the classes ignores their relative ordering) or assume additional information (for instance, Mean Average Error assumes absolute distances between classes). In this paper we propose a new metric for Ordinal Classification, Closeness Evaluation Measure, that is rooted on Measurement Theory and Information Theory. Our theoretical analysis and experimental results over both synthetic data and data from NLP shared tasks indicate that the proposed metric captures quality aspects from different traditional tasks simultaneously. In addition, it generalizes some popular classification (nominal scale) and error minimization (interval scale) metrics, depending on the measurement scale in which it is instantiated.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers