12/07/2020

Partial Trace Regression and Low-Rank Kraus Decomposition

Hachem Kadri, Stephane Ayache, Riikka Huusari, alain rakotomamonjy, Ralaivola Liva

Keywords: General Machine Learning Techniques

Abstract: The trace regression model, a direct extension to the well-studied linear regression model, allows one to map matrices to real-valued outputs. We here introduce a yet more general model, namely the partial trace regression model, a family of linear mappings from matrix-valued inputs to matrix-valued outputs; this model subsumes the trace regression model and thus the linear regression model. Borrowing tools from quantum information theory, where partial trace operators have been extensively studied, we propose a framework for learning partial trace regression models from data by taking advantage of the so-called low-rank Kraus representation of completely positive maps. We show the relevance of our framework with synthetic and real-world experiments conducted for both i) matrix-to-matrix regression and ii) positive semidefinite matrix completion, two tasks which can be formulated as partial trace regression problems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers