12/07/2020

Influence Diagram Bandits

Tong Yu, Branislav Kveton, Zheng Wen, Ruiyi Zhang, Ole J. Mengshoel

Keywords: Online Learning, Active Learning, and Bandits

Abstract: We propose a novel framework for structured bandits, which we call influence diagram bandit. Our framework captures complicated statistical dependencies between actions, latent variables, and observations; and unifies and extends many existing models, such as combinatorial semi-bandits, cascading bandits, and low-rank bandits. We develop novel online learning algorithms that allow us to act efficiently in our models. The key idea is to track a structured posterior distribution of model parameters, either exactly or approximately. To act, we sample model parameters from their posterior and then use the structure of the influence diagram to find the most optimistic actions under the sampled parameters. We experiment with three structured bandit problems: cascading bandits, online learning to rank in the position-based model, and rank-1 bandits. Our algorithms achieve up to about 3 times higher cumulative reward than baselines.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers