23/08/2020

Generic outlier detection in multi-armed bandit

Yikun Ban, Jingrui He

Keywords: bandit algorithms, anomaly detection, multi-armed bandit, outlier detection

Abstract: In this paper, we study the problem of outlier arm detection in multi-armed bandit settings, which finds plenty of applications in many high-impact domains such as finance, healthcare, and online advertising. For this problem, a learner aims to identify the arms whose expected rewards deviate significantly from most of the other arms. Different from existing work, we target the generic outlier arms or outlier arm groups whose expected rewards can be larger, smaller, or even in between those of normal arms. To this end, we start by providing a comprehensive definition of such generic outlier arms and outlier arm groups. Then we propose a novel pulling algorithm named GOLD to identify such generic outlier arms. It builds a real-time neighborhood graph based on upper confidence bounds and catches the behavior pattern of outliers from normal arms. We also analyze its performance from various aspects. In the experiments conducted on both synthetic and real-world data sets, the proposed algorithm achieves 98

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403134#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers