12/07/2020

PoWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

Saurabh Goyal, Anamitra Roy Choudhury, Venkatesan Chakaravarthy, Saurabh Raje, Yogish Sabharwal, Ashish Verma

Keywords: Applications - Language, Speech and Dialog

Abstract: We develop a novel method, called PoWER-BERT, for improving the inference time of the popular BERT model, while maintaining the accuracy. It works by: a) exploiting redundancy pertaining to word-vectors (intermediate encoder outputs) and eliminating the redundant vectors. b) determining which word-vectors to eliminate by developing a strategy for measuring their significance, based on the self-attention mechanism; c) learning how many word-vectors to eliminate by augmenting the BERT model and the loss function. Experiments on the standard GLUE benchmark shows that PoWER-BERT achieves up to 4.5x reduction in inference time over BERT with < 1% loss in accuracy. We show that PoWER-BERT offers significantly better trade-off between accuracy and inference time compared to prior methods. We demonstrate that our method attains up to 6.8x reduction in inference time with < 1% loss in accuracy when applied over ALBERT, a highly compressed version of BERT.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers