02/02/2021

Improving the Efficiency and Effectiveness for BERT-based Entity Resolution

Bing Li, Yukai Miao, Yaoshu Wang, Yifang Sun, Wei Wang

Keywords:

Abstract: BERT has set a new state-of-the-art performance on entity resolution (ER) task, largely owed to fine-tuning pre-trained language models and the deep pair-wise interaction. Albeit being remarkably effective, it comes with a steep increase in computational cost, as the deep-interaction requires to exhaustively compute every tuple pair to search for co-references. For ER task, it is often prohibitively expensive due to the large cardinality to be matched. To tackle this, we introduce a siamese network structure that independently encodes tuples using BERT but delays the pair-wise interaction via an enhanced alignment network. This siamese structure enables a dedicated blocking module to quickly filter out obviously dissimilar tuple pairs, and thus drastically reduces the cardinality of fine-grained matching. Further, the blocking and entity matching are integrated into a multi-task learning framework for facilitating both tasks. Extensive experiments on multiple datasets demonstrate that our model significantly outperforms state-of-the-art models (including BERT) in both efficiency and effectiveness.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948870
(Link will open in new window)
 0
 1
 1
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers