06/12/2021

Stochastic Multi-Armed Bandits with Control Variates

Arun Verma, Manjesh Kumar Hanawal

Keywords: theory, bandits

Abstract: This paper studies a new variant of the stochastic multi-armed bandits problem where auxiliary information about the arm rewards is available in the form of control variates. In many applications like queuing and wireless networks, the arm rewards are functions of some exogenous variables. The mean values of these variables are known a priori from historical data and can be used as control variates. Leveraging the theory of control variates, we obtain mean estimates with smaller variance and tighter confidence bounds. We develop an improved upper confidence bound based algorithm named UCB-CV and characterize the regret bounds in terms of the correlation between rewards and control variates when they follow a multivariate normal distribution. We also extend UCB-CV to other distributions using resampling methods like Jackknifing and Splitting. Experiments on synthetic problem instances validate performance guarantees of the proposed algorithms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers