06/12/2021

Parallelizing Thompson Sampling

Amin Karbasi, Vahab Mirrokni, Mohammad Shadravan

Keywords: reinforcement learning and planning, bandits

Abstract: How can we make use of information parallelism in online decision-making problems while efficiently balancing the exploration-exploitation trade-off? In this paper, we introduce a batch Thompson Sampling framework for two canonical online decision-making problems with partial feedback, namely, stochastic multi-arm bandit and linear contextual bandit. Over a time horizon $T$, our batch Thompson Sampling policy achieves the same (asymptotic) regret bound of a fully sequential one while carrying out only $O(\log T)$ batch queries. To achieve this exponential reduction, i.e., reducing the number of interactions from $T$ to $O(\log T)$, our batch policy dynamically determines the duration of each batch in order to balance the exploration-exploitation trade-off. We also demonstrate experimentally that dynamic batch allocation outperforms natural baselines.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers