06/12/2021

Fast Algorithms for $L_\infty$-constrained S-rectangular Robust MDPs

Bahram Behzadian, Marek Petrik, Chin Pang Ho

Keywords: optimization, reinforcement learning and planning

Abstract: Robust Markov decision processes (RMDPs) are a useful building block of robust reinforcement learning algorithms but can be hard to solve. This paper proposes a fast, exact algorithm for computing the Bellman operator for S-rectangular robust Markov decision processes with $L_\infty$-constrained rectangular ambiguity sets. The algorithm combines a novel homotopy continuation method with a bisection method to solve S-rectangular ambiguity in quasi-linear time in the number of states and actions. The algorithm improves on the cubic time required by leading general linear programming methods. Our experimental results confirm the practical viability of our method and show that it outperforms a leading commercial optimization package by several orders of magnitude.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers