06/12/2021

Discovering Dynamic Salient Regions for Spatio-Temporal Graph Neural Networks

Iulia Duta, Andrei L Nicolicioiu, Marius Leordeanu

Keywords: deep learning, machine learning, graph learning

Abstract: Graph Neural Networks are perfectly suited to capture latent interactions between various entities in the spatio-temporal domain (e.g. videos). However, when an explicit structure is not available, it is not obvious what atomic elements should be represented as nodes. Current works generally use pre-trained object detectors or fixed, predefined regions to extract graph nodes. Improving upon this, our proposed model learns nodes that dynamically attach to well-delimited salient regions, which are relevant for a higher-level task, without using any object-level supervision. Constructing these localized, adaptive nodes gives our model inductive bias towards object-centric representations and we show that it discovers regions that are well correlated with objects in the video. In extensive ablation studies and experiments on two challenging datasets, we show superior performance to previous graph neural networks models for video classification.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers