19/08/2021

Heuristic Search for Approximating One Matrix in Terms of Another Matrix

Guihong Wan, Haim Schweitzer

Keywords: Data Mining, Feature Extraction, Selection and Dimensionality Reduction, Heuristic Search, Dimensionality Reduction, Learning Sparse Models

Abstract: We study the approximation of a target matrix in terms of several selected columns of another matrix, sometimes called "a dictionary". This approximation problem arises in various domains, such as signal processing, computer vision, and machine learning. An optimal column selection algorithm for the special case where the target matrix has only one column is known since the 1970's, but most previously proposed column selection algorithms for the general case are greedy. We propose the first nontrivial optimal algorithm for the general case, using a heuristic search setting similar to the classical A* algorithm. We also propose practical sub-optimal algorithms in a setting similar to the classical Weighted A* algorithm. Experimental results show that our sub-optimal algorithms compare favorably with the current state-of-the-art greedy algorithms. They also provide bounds on how close their solutions are to the optimal solution.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers