19/08/2021

Automatic Translation of Music-to-Dance for In-Game Characters

Yinglin Duan, Tianyang Shi, Zhipeng Hu, Zhengxia Zou, Changjie Fan, Yi Yuan, Xi Li

Keywords: Machine Learning, Semi-Supervised Learning, Applications of Supervised Learning, Art and Music

Abstract: Music-to-dance translation is an emerging and powerful feature in recent role-playing games. Previous works of this topic consider music-to-dance as a supervised motion generation problem based on time-series data. However, these methods require a large amount of training data pairs and may suffer from the degradation of movements. This paper provides a new solution to this task where we re-formulate the translation as a piece-wise dance phrase retrieval problem based on the choreography theory. With such a design, players are allowed to optionally edit the dance movements on top of our generation while other regression-based methods ignore such user interactivity. Considering that the dance motion capture is expensive that requires the assistance of professional dancers, we train our method under a semi-supervised learning fashion with a large unlabeled music dataset (20x than our labeled one) and also introduce self-supervised pre-training to improve the training stability and generalization performance. Experimental results suggest that our method not only generalizes well over various styles of music but also succeeds in choreography for game players. Our project including the large-scale dataset and supplemental materials is available at https://github.com/FuxiCV/music-to-dance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers