19/08/2021

Learning to Learn Personalized Neural Network for Ventricular Arrhythmias Detection on Intracardiac EGMs

Zhenge Jia, Zhepeng Wang, Feng Hong, Lichuan PING, Yiyu Shi, Jingtong Hu

Keywords: Machine Learning, Transfer, Adaptation, Multi-task Learning, Biology and Medicine, Bio/Medicine

Abstract: Life-threatening ventricular arrhythmias (VAs) detection on intracardiac electrograms (IEGMs) is essential to Implantable Cardioverter Defibrillators (ICDs). However, current VAs detection methods count on a variety of heuristic detection criteria, and require frequent manual interventions to personalize criteria parameters for each patient to achieve accurate detection. In this work, we propose a one-dimensional convolutional neural network (1D-CNN) based life-threatening VAs detection on IEGMs. The network architecture is elaborately designed to satisfy the extreme resource constraints of the ICD while maintaining high detection accuracy. We further propose a meta-learning algorithm with a novel patient-wise training tasks formatting strategy to personalize the 1D-CNN. The algorithm generates a well-generalized model initialization containing across-patient knowledge, and performs a quick adaptation of the model to the specific patient's IEGMs. In this way, a new patient could be immediately assigned with personalized 1D-CNN model parameters using limited input data. Compared with the conventional VAs detection method, the proposed method achieves 2.2% increased sensitivity for detecting VAs rhythm and 8.6% increased specificity for non-VAs rhythm.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers