Abstract:
Life-threatening ventricular arrhythmias (VAs) detection on intracardiac electrograms (IEGMs) is essential to Implantable Cardioverter Defibrillators (ICDs). However, current VAs detection methods count on a variety of heuristic detection criteria, and require frequent manual interventions to personalize criteria parameters for each patient to achieve accurate detection. In this work, we propose a one-dimensional convolutional neural network (1D-CNN) based life-threatening VAs detection on IEGMs. The network architecture is elaborately designed to satisfy the extreme resource constraints of the ICD while maintaining high detection accuracy. We further propose a meta-learning algorithm with a novel patient-wise training tasks formatting strategy to personalize the 1D-CNN. The algorithm generates a well-generalized model initialization containing across-patient knowledge, and performs a quick adaptation of the model to the specific patient's IEGMs. In this way, a new patient could be immediately assigned with personalized 1D-CNN model parameters using limited input data. Compared with the conventional VAs detection method, the proposed method achieves 2.2% increased sensitivity for detecting VAs rhythm and 8.6% increased specificity for non-VAs rhythm.