19/08/2021

Cooperative Joint Attentive Network for Patient Outcome Prediction on Irregular Multi-Rate Multivariate Health Data

Qingxiong Tan, Mang Ye, Grace Lai-Hung Wong, PongChi Yuen

Keywords: Data Mining, Mining Spatial, Temporal Data

Abstract: Due to the dynamic health status of patients and discrepant stability of physiological variables, health data often presents as irregular multi-rate multivariate time series (IMR-MTS) with significantly varying sampling rates. Existing methods mainly study changes of IMR-MTS values in the time domain, without considering their different dominant frequencies and varying data quality. Hence, we propose a novel Cooperative Joint Attentive Network (CJANet) to analyze IMR-MTS in frequency domain, which adaptively handling discrepant dominant frequencies while tackling diverse data qualities caused by irregular sampling. In particular, novel dual-channel joint attention is designed to jointly identify important magnitude and phase signals while detecting their dominant frequencies, automatically enlarging the positive influence of key variables and frequencies. Furthermore, a new cooperative learning module is introduced to enhance information exchange between magnitude and phase channels, effectively integrating global signals to optimize the network. A frequency-aware fusion strategy is finally designed to aggregate the learned features. Extensive experimental results on real-world medical datasets indicate that CJANet significantly outperforms existing methods and provides highly interpretable results.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers