19/08/2021

Non-I.I.D. Multi-Instance Learning for Predicting Instance and Bag Labels with Variational Auto-Encoder

Weijia Zhang

Keywords: Machine Learning, Multi-instance; Multi-label; Multi-view learning, Weakly Supervised Learning, Classification

Abstract: Multi-instance learning is a type of weakly supervised learning. It deals with tasks where the data is a set of bags and each bag is a set of instances. Only the bag labels are observed whereas the labels for the instances are unknown. An important advantage of multi-instance learning is that by representing objects as a bag of instances, it is able to preserve the inherent dependencies among parts of the objects. Unfortunately, most existing algorithms assume all instances to be identically and independently distributed, which violates real-world scenarios since the instances within a bag are rarely independent. In this work, we propose the Multi-Instance Variational Autoencoder (MIVAE) algorithm which explicitly models the dependencies among the instances for predicting both bag labels and instance labels. Experimental results on several multi-instance benchmarks and end-to-end medical imaging datasets demonstrate that MIVAE performs better than state-of-the-art algorithms for both instance label and bag label prediction tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers