19/08/2021

Neural Relation Inference for Multi-dimensional Temporal Point Processes via Message Passing Graph

Yunhao Zhang, Junchi Yan

Keywords: Machine Learning, Relational Learning, Time-series; Data Streams

Abstract: Relation discovery for multi-dimensional temporal point processes (MTPP) has received increasing interest for its importance in prediction and interpretability of the underlying dynamics. Traditional statistical MTPP models like Hawkes Process have difficulty in capturing complex relation due to their limited parametric form of the intensity function. While recent neural-network-based models suffer poor interpretability. In this paper, we propose a neural relation inference model namely TPP-NRI. Given MTPP data, it adopts a variational inference framework to model the posterior relation of MTPP data for probabilistic estimation. Specifically, assuming the prior of the relation is known, the conditional probability of the MTPP conditional on a sampled relation is captured by a message passing graph neural network (GNN) based MTPP model. A variational distribution is introduced to approximate the true posterior. Experiments on synthetic and real-world data show that our model outperforms baseline methods on both inference capability and scalability for high-dimensional data.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers