22/11/2021

UBR²S: Uncertainty-Based Resampling and Reweighting Strategy for Unsupervised Domain Adaptation

Tobias Ringwald, Rainer Stiefelhagen

Keywords: domain adaptation, transfer learning, unsupervised domain adaptation, synthetic to real, uncertainty, Monte Carlo dropout

Abstract: Unsupervised domain adaptation (UDA) deals with the adaptation process of a model to an unlabeled target domain while annotated data is only available for a given source domain. This poses a challenging task, as the domain shift between source and target instances deteriorates a model's performance when not addressed. In this paper, we propose UBR²S – the Uncertainty-Based Resampling and Reweighting Strategy – to tackle this problem. UBR²S employs a Monte Carlo dropout-based uncertainty estimate to obtain per-class probability distributions, which are then used for dynamic resampling of pseudo-labels and reweighting based on their sample likelihood and the accompanying decision error. Our proposed method achieves state-of-the-art results on multiple UDA datasets with single and multi-source adaptation tasks and can be applied to any off-the-shelf network architecture. Code for our method is available at https://gitlab.com/tringwald/UBR2S.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers