07/09/2020

Unsupervised Domain Adaptation by Uncertain Feature Alignment

Tobias Ringwald, Rainer Stiefelhagen

Keywords: transfer learning, domain adaptation, unsupervised domain adaptation, uncertainty

Abstract: Unsupervised domain adaptation (UDA) deals with the adaptation of models from a given source domain with labeled data to an unlabeled target domain. In this paper, we utilize the inherent prediction uncertainty of a model to accomplish the domain adaptation task. The uncertainty is measured by Monte-Carlo dropout and used for our proposed Uncertainty-based Filtering and Feature Alignment (UFAL) that combines an Uncertain Feature Loss (UFL) function and an Uncertainty-Based Filtering (UBF) approach for alignment of features in Euclidean space. Our method surpasses recently proposed architectures and achieves state-of-the-art results on multiple challenging datasets. Code is available on the project website.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers