19/08/2021

Stochastic Probing with Increasing Precision

Martin Hoefer, Kevin Schewior, Daniel Schmand

Keywords: Planning and Scheduling, Planning under Uncertainty, Resource Allocation, Algorithmic Game Theory

Abstract: We consider a selection problem with stochastic probing. There is a set of items whose values are drawn from independent distributions. The distributions are known in advance. Each item can be \emph{tested} repeatedly. Each test reduces the uncertainty about the realization of its value. We study a testing model, where the first test reveals if the realized value is smaller or larger than the median of the underlying distribution. Subsequent tests allow to further narrow down the interval in which the realization is located. There is a limited number of possible tests, and our goal is to design near-optimal testing strategies that allow to maximize the expected value of the chosen item. We study both identical and non-identical distributions and develop polynomial-time algorithms with constant approximation factors in both scenarios.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers