12/07/2020

Adaptive Sampling for Estimating Probability Distributions

Shubhanshu Shekhar, Tara Javidi, Mohammad Ghavamzadeh

Keywords: Online Learning, Active Learning, and Bandits

Abstract: We consider the problem of allocating a fixed budget of samples to a finite set of discrete distributions to learn them uniformly well (minimizing the maximum error) in terms of four common distance measures: $\ell_2^2$, $\ell_1$, $f$-divergence, and separation distance. To present a unified treatment of these distances, we first propose a general \emph{optimistic tracking algorithm} and analyze its sample allocation performance w.r.t.~an oracle. We then instantiate this algorithm for the four distance measures and derive bounds on their regret. We also show that the allocation performance of the proposed algorithm cannot, in general, be improved, by deriving lower-bounds on the expected deviation from the oracle allocation for any adaptive scheme. We verify our theoretical findings through some experiments. Finally, we show that the techniques developed in the paper can be easily extended to learn some classes of continuous distributions as well as to the related setting of minimizing the average error (in terms of the four distances) in learning a set of distributions.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers