22/11/2021

Generative Dynamic Patch Attack

Xiang Li, Shihao Ji

Keywords: patch attack, adversarial attack, adversarial defense, adversarial training, robustness, generative model

Abstract: Adversarial patch attack is a family of attack algorithms that perturb a part of image to fool a deep neural network model. Existing patch attacks mostly consider injecting adversarial patches at input-agnostic locations: either a predefined location or a random location. This attack setup may be sufficient for attack but has considerable limitations when using it for adversarial training. Thus, robust models trained with existing patch attacks cannot effectively defend other adversarial attacks. In this paper, we first propose an end-to-end patch attack algorithm, Generative Dynamic Patch Attack (GDPA), which generates both patch pattern and patch location adversarially for each input image. We show that GDPA is a generic attack framework that can produce dynamic/static and visible/invisible patches with a few configuration changes. Secondly, GDPA can be readily integrated for adversarial training to improve model robustness to various adversarial attacks. Extensive experiments on VGGFace, Traffic Sign and ImageNet show that GDPA achieves higher attack success rates than state-of-the-art patch attacks, while adversarially trained model with GDPA demonstrates superior robustness to adversarial patch attacks than competing methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers