22/11/2021

Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining and Consistency

Samarth Mishra, Kate Saenko, Venkatesh Saligrama

Keywords: Domain Adaptation, Semi-supervised learning, Representation Learning

Abstract: Most modern unsupervised domain adaptation (UDA) approaches are rooted in domain alignment, i.e., learning to align source and target features to learn a target domain classifier using source labels. In semi-supervised domain adaptation (SSDA), when the learner can access few target domain labels, prior approaches have followed UDA theory to use domain alignment for learning. We show that the case of SSDA is different and a good target classifier can be learned without needing alignment. We use self-supervised pretraining (via rotation prediction) and consistency regularization to achieve well separated target clusters, aiding in learning a low error target classifier. With our Pretraining and Consistency (PAC) approach, we achieve state of the art target accuracy on this semi-supervised domain adaptation task, surpassing multiple adversarial domain alignment methods, across multiple datasets. Notably, PAC outperforms all recent approaches by 3-5% on the large and challenging DomainNet benchmark, showing the strength of these simple techniques in fixing errors made by adversarial alignment.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers