22/11/2021

V3GAN: Decomposing Background, Foreground and Motion for Video Generation

Arti Keshari, Sonam Gupta, Sukhendu Das

Keywords: video generation, unconditional video generation, shuffling loss, feature level masking, unsupervised learning, GAN, foreground, background, motion decomposition

Abstract: Video generation is a challenging task that requires modeling plausible spatial and temporal dynamics in a video. Inspired by how humans perceive a video by grouping a scene into moving and stationary components, we propose a method that decomposes the task of video generation into the synthesis of foreground, background and motion. Foreground and background together describe the appearance, whereas motion specifies how the foreground moves in a video over time. We propose V3GAN, a novel three-branch generative adversarial network where two branches model foreground and background information, while the third branch models the temporal information without any supervision. The foreground branch is augmented with our novel feature level masking layer that aids in learning an accurate mask for foreground and background separation. To encourage motion consistency, we further propose a shuffling loss for the video discriminator. Extensive quantitative and qualitative analysis on synthetic as well as real-world benchmark datasets demonstrates that V3GAN outperforms the state-of-the-art methods by a significant margin.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers