07/09/2020

NTGAN: Learning Blind Image Denoising without Clean Reference

Rui Zhao, Daniel P.K. Lun, Kin-Man Lam

Keywords: unsupervised image denoising, blind image denoising, pseudo supervision, noise transference

Abstract: Recent studies on learning-based image denoising have achieved promising performance on various noise reduction tasks. Most of these deep denoisers are trained either under the supervision of clean references, or unsupervised on synthetic noise. The assumption with the synthetic noise leads to poor generalization when facing real photographs. To address this issue, we propose a novel deep unsupervised image-denoising method by regarding the noise reduction task as a special case of the noise transference task. Learning noise transference enables the network to acquire the denoising ability by only observing the corrupted samples. The results on real-world denoising benchmarks demonstrate that our proposed method achieves state-of-the-art performance on removing realistic noises, making it a potential solution to practical noise reduction problems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers