14/06/2020

Learning to Restore Low-Light Images via Decomposition-and-Enhancement

Ke Xu, Xin Yang, Baocai Yin, Rynson W.H. Lau

Keywords: low-light, image restoration, image enhancement, convolutional neural networks

Abstract: Low-light images typically suffer from two problems. First, they have low visibility (i.e., small pixel values). Second, noise becomes significant and disrupts the image content, due to low signal-to-noise ratio. Most existing lowlight image enhancement methods, however, learn from noise-negligible datasets. They rely on users having good photographic skills in taking images with low noise. Unfortunately, this is not the case for majority of the low-light images. While concurrently enhancing a low-light image and removing its noise is ill-posed, we observe that noise exhibits different levels of contrast in different frequency layers, and it is much easier to detect noise in the lowfrequency layer than in the high one. Inspired by this observation, we propose a frequency-based decompositionand- enhancement model for low-light image enhancement. Based on this model, we present a novel network that first learns to recover image objects in the low-frequency layer and then enhances high-frequency details based on the recovered image objects. In addition, we have prepared a new low-light image dataset with real noise to facilitate learning. Finally, we have conducted extensive experiments to show that the proposed method outperforms state-of-the-art approaches in enhancing practical noisy low-light images.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers