18/07/2021

A Lower Bound for the Sample Complexity of Inverse Reinforcement Learning

Abi Komanduru, Jean Honorio

Keywords: Theory, Statistical Learning Theory

Abstract: Inverse reinforcement learning (IRL) is the task of finding a reward function that generates a desired optimal policy for a given Markov Decision Process (MDP). This paper develops an information-theoretic lower bound for the sample complexity of the finite state, finite action IRL problem. A geometric construction of $\beta$-strict separable IRL problems using spherical codes is considered. Properties of the ensemble size as well as the Kullback-Leibler divergence between the generated trajectories are derived. The resulting ensemble is then used along with Fano's inequality to derive a sample complexity lower bound of $O(n \log n)$, where $n$ is the number of states in the MDP.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers