12/07/2020

Neural Contextual Bandits with UCB-based Exploration

Dongruo Zhou, Lihong Li, Quanquan Gu

Keywords: Online Learning, Active Learning, and Bandits

Abstract: We study the stochastic contextual bandit problem, where the reward is generated from an unknown bounded function with additive noise. We propose the NeuralUCB algorithm, which leverages the representation power of deep neural networks and uses a neural network-based random feature mapping to construct an upper confidence bound (UCB) of reward for efficient exploration. We prove that, under mild assumptions, NeuralUCB achieves $\tilde O(\sqrt{T})$ regret, where $T$ is the number of rounds. To the best of our knowledge, our algorithm is the first neural network-based contextual bandit algorithm with near-optimal regret guarantee. We also show the algorithm is empirically competitive against representative baselines in a number of benchmarks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers