23/06/2021

Adaptive Restarts for Stochastic Synthesis

Jason R. Koenig, Oded Padon, Alex Aiken

Keywords: stochastic synthesis, restart strategies, superoptimization

Abstract: We consider the problem of program synthesis from input-output examples via stochastic search. We identify a robust feature of stochastic synthesis: The search often progresses through a series of discrete plateaus. We observe that the distribution of synthesis times is often heavy-tailed and analyze how these distributions arise. Based on these insights, we present an algorithm that speeds up synthesis by an order of magnitude over the naive algorithm currently used in practice. Our experimental results are obtained in part using a new program synthesis benchmark for superoptimization distilled from widely used production code.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38956296
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at PLDI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers