02/02/2021

What to Select: Pursuing Consistent Motion Segmentation from Multiple Geometric Models

Yangbangyan Jiang, Qianqian Xu, Ke Ma, Zhiyong Yang, Xiaochun Cao, Qingming Huang

Keywords:

Abstract: Motion segmentation aims at separating motions of different moving objects in a video sequence. Facing the complicated real-world scenes, recent studies reveal that combining multiple geometric models would be a more effective way than just employing a single one. This motivates a new wave of model-fusion based motion segmentation methods. However, the vast majority of models of this kind merely seek consensus in spectral embeddings. We argue that a simple consensus might be insufficient to filter out the harmful information which is either unreliable or semantically unrelated to the segmentation task. Therefore, how to automatically select valuable patterns across multiple models should be regarded as a key challenge here. In this paper, we present a novel geometric-model-fusion framework for motion segmentation, which targets at constructing a consistent affinity matrix across all the geometric models. Specifically, it incorporates the structural information shared by affinity matrices to select those semantically consistent entries. Meanwhile, a multiplicative decomposition scheme is adopted to ensure structural consistency among multiple affinities. To solve this problem, an alternative optimization scheme is proposed, together with a proof of its global convergence. Experiments on four real-world benchmarks show the superiority of the proposed method.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948029
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers