02/02/2021

LCollision: Fast Generation of Collision-Free Human Poses using Learned Non-Penetration Constraints

Qingyang Tan, Zherong Pan, Dinesh Manocha

Keywords:

Abstract: We present LCollision, a learning-based method that synthesizes collision-free 3D human poses. At the crux of our approach is a novel deep architecture that simultaneously decodes new human poses from the latent space and predicts colliding body parts. These two components of our architecture are used as the objective function and surrogate hard constraints in a constrained optimization for collision-free human pose generation. A novel aspect of our approach is the use of a bilevel autoencoder that decomposes whole-body collisions into groups of collisions between localized body parts. By solving the constrained optimizations, we show that a significant amount of collision artifacts can be resolved. Furthermore, in a large test set of 2.5 × 10 6 randomized poses from SCAPE, our architecture achieves a collision-prediction accuracy of 94.1% with 80× speedup over exact collision detection algorithms. To the best of our knowledge, LCollision is the first approach that accelerates collision detection and resolves penetrations using a neural network.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947734
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers