02/02/2021

Learning Term Embeddings for Lexical Taxonomies

Jingping Liu, Menghui Wang, Chao Wang, Jiaqing Liang, Lihan Chen, Haiyun Jiang, Yanghua Xiao, Yunwen Chen

Keywords:

Abstract: Lexical taxonomies, a special kind of knowledge graph, are essential for natural language understanding. This paper studies the problem of lexical taxonomy embedding. Most existing graph embedding methods are difficult to apply to lexical taxonomies since 1) they ignore implicit but important information, namely, sibling relations, which are not explicitly mentioned in lexical taxonomies and 2) there are lots of polysemous terms in lexical taxonomies. In this paper, we propose a novel method for lexical taxonomy embedding. This method optimizes an objective function that models both hyponym-hypernym relations and sibling relations. A term-level attention mechanism and a random walk based metric are then proposed to assist the modeling of these two kinds of relations, respectively. Finally, a novel training method based on curriculum learning is proposed. We conduct extensive experiments on two tasks to show that our approach outperforms other embedding methods and we use the learned term embeddings to enhance the performance of the state-of-the-art models that are based on BERT and RoBERTa on text classification.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948782
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers