02/02/2021

Exploration via State influence Modeling

Yongxin Kang, Enmin Zhao, Kai Li, Junliang Xing

Keywords:

Abstract: This paper studies the challenging problem of reinforcement learning (RL) in hard exploration tasks with sparse rewards. It focuses on the exploration stage before the agent gets the first positive reward, in which case, traditional RL algorithms with simple exploration strategies often work poorly. Unlike previous methods using some attribute of a single state as the intrinsic reward to encourage exploration, this work leverages the social influence between different states to permit more efficient exploration. It introduces a general intrinsic reward construction method to evaluate the social influence of states dynamically. Three kinds of social influence are introduced for a state: conformity, power, and authority. By measuring the state’s social influence, agents quickly find the focus state during the exploration process. The proposed RL framework with state social influence evaluation works well in hard exploration task. Extensive experimental analyses and comparisons in Grid Maze and many hard exploration Atari 2600 games demonstrate its high exploration efficiency.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947745
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers