03/05/2021

Monte-Carlo Planning and Learning with Language Action Value Estimates

Youngsoo Jang, Seokin Seo, Jongmin Lee, Kee-Eung Kim

Keywords: reinforcement learning, interactive fiction, Monte-Carlo tree search, natural language processing

Abstract: Interactive Fiction (IF) games provide a useful testbed for language-based reinforcement learning agents, posing significant challenges of natural language understanding, commonsense reasoning, and non-myopic planning in the combinatorial search space. Agents based on standard planning algorithms struggle to play IF games due to the massive search space of language actions. Thus, language-grounded planning is a key ability of such agents, since inferring the consequence of language action based on semantic understanding can drastically improve search. In this paper, we introduce Monte-Carlo planning with Language Action Value Estimates (MC-LAVE) that combines a Monte-Carlo tree search with language-driven exploration. MC-LAVE invests more search effort into semantically promising language actions using locally optimistic language value estimates, yielding a significant reduction in the effective search space of language actions. We then present a reinforcement learning approach via MC-LAVE, which alternates between MC-LAVE planning and supervised learning of the self-generated language actions. In the experiments, we demonstrate that our method achieves new high scores in various IF games.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers