02/02/2021

Consistency and Finite Sample Behavior of Binary Class Probability Estimation

Alexander Mey, Marco Loog

Keywords:

Abstract: We investigate to which extent one can recover class probabilities within the empirical risk minimization (ERM) paradigm. We extend existing results and emphasize the tight relations between empirical risk minimization and class probability estimation. Following previous literature on excess risk bounds and proper scoring rules, we derive a class probability estimator based on empirical risk minimization. We then derive conditions under which this estimator will converge with high probability to the true class probabilities with respect to the L1-norm. One of our core contributions is a novel way to derive finite sample L1-convergence rates of this estimator for different surrogate loss functions. We also study in detail which commonly used loss functions are suitable for this estimation problem and briefly address the setting of model-misspecification.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948814
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers