02/02/2021

PAC Learning of Causal Trees with Latent Variables

Prasad Tadepalli, Stuart J. Russell

Keywords:

Abstract: Learning causal models with latent variables from observational and experimental data is an important problem. In this paper we present a polynomial-time algorithm that PAC learns the structure and parameters of a rooted tree-structured causal network of bounded degree where the internal nodes of the tree cannot be observed or manipulated. Our algorithm is the first of its kind to provably learn the structure and parameters of tree-structured causal models with latent internal variables from random examples and active experiments.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949100
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers