09/07/2020

ID3 Learns Juntas for Smoothed Product Distributions

Eran Malach, Amit Daniely, Alon Brutzkus

Keywords: Classification, Decision Trees

Abstract: In recent years, there are many attempts to understand popular heuristics. An example of such heuristic algorithm is the ID3 algorithm for learning decision trees. This algorithm is commonly used in practice, but there are very few theoretical works studying its behavior. In this paper, we analyze the ID3 algorithm, when the target function is a k-Junta, a function that depends on k out of n variables of the input. We prove that when k = log n, the ID3 algorithm learns in polynomial time k-Juntas, in the smoothed analysis model of Kalai and Teng (2008). That is, we show a learnability result when the observed distribution is a “noisy” variant of the original distribution.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers